Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Nat Commun ; 15(1): 1541, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378758

RESUMO

Proteostasis can be disturbed by mutations affecting folding and stability of the encoded protein. An example is the ubiquitin ligase Parkin, where gene variants result in autosomal recessive Parkinsonism. To uncover the pathological mechanism and provide comprehensive genotype-phenotype information, variant abundance by massively parallel sequencing (VAMP-seq) is leveraged to quantify the abundance of Parkin variants in cultured human cells. The resulting mutational map, covering 9219 out of the 9300 possible single-site amino acid substitutions and nonsense Parkin variants, shows that most low abundance variants are proteasome targets and are located within the structured domains of the protein. Half of the known disease-linked variants are found at low abundance. Systematic mapping of degradation signals (degrons) reveals an exposed degron region proximal to the so-called "activation element". This work provides examples of how missense variants may cause degradation either via destabilization of the native protein, or by introducing local signals for degradation.


Assuntos
Transtornos Parkinsonianos , Proteostase , Humanos , Proteostase/genética , Ubiquitina-Proteína Ligases/metabolismo , Mutação , Transtornos Parkinsonianos/genética , Mutação de Sentido Incorreto , Proteínas/metabolismo
2.
PLoS Genet ; 20(2): e1011171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408084

RESUMO

Defects in protein homeostasis can induce proteotoxic stress, affecting cellular fitness and, consequently, overall tissue health. In various growing tissues, cell competition based mechanisms facilitate detection and elimination of these compromised, often referred to as 'loser', cells by the healthier neighbors. The precise connection between proteotoxic stress and competitive cell survival remains largely elusive. Here, we reveal the function of an endoplasmic reticulum (ER) and Golgi localized protein Rer1 in the regulation of protein homeostasis in the developing Drosophila wing epithelium. Our results show that loss of Rer1 leads to proteotoxic stress and PERK-mediated phosphorylation of eukaryotic initiation factor 2α. Clonal analysis showed that rer1 mutant cells are identified as losers and eliminated through cell competition. Interestingly, we find that Rer1 levels are upregulated upon Myc-overexpression that causes overgrowth, albeit under high proteotoxic stress. Our results suggest that increased levels of Rer1 provide cytoprotection to Myc-overexpressing cells by alleviating the proteotoxic stress and thereby supporting Myc-driven overgrowth. In summary, these observations demonstrate that Rer1 acts as a novel regulator of proteostasis in Drosophila and reveal its role in competitive cell survival.


Assuntos
Drosophila , Glicoproteínas de Membrana , Animais , Drosophila/genética , Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteostase/genética , Sobrevivência Celular/genética , Complexo de Golgi/metabolismo
3.
Sci Rep ; 14(1): 198, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167612

RESUMO

The proteostasis network (PN) is a collection of protein folding and degradation pathways that spans cellular compartments and acts to preserve the integrity of the proteome. The differential expression of PN genes is a hallmark of many cancers, and the inhibition of protein quality control factors is an effective way to slow cancer cell growth. However, little is known about how the expression of PN genes differs between patients and how this impacts survival outcomes. To address this, we applied unbiased hierarchical clustering to gene expression data obtained from primary and metastatic cutaneous melanoma (CM) samples and found that two distinct groups of individuals emerge across each sample type. These patient groups are distinguished by the differential expression of genes encoding ATP-dependent and ATP-independent chaperones, and proteasomal subunits. Differences in PN gene expression were associated with increased levels of the transcription factors, MEF2A, SP4, ZFX, CREB1 and ATF2, as well as markedly different survival outcomes. However, surprisingly, similar PN alterations in primary and metastatic samples were associated with discordant survival outcomes in patients. Our findings reveal that the expression of PN genes demarcates CM patients and highlights several new proteostasis sub-networks that could be targeted for more effective suppression of CM within specific individuals.


Assuntos
Melanoma , Deficiências na Proteostase , Neoplasias Cutâneas , Humanos , Proteostase/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Expressão Gênica , Deficiências na Proteostase/genética
4.
Nucleic Acids Res ; 52(3): 1156-1172, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38055836

RESUMO

The Rad5/HLTF protein has a central role in the tolerance to DNA damage by mediating an error-free mode of bypassing unrepaired DNA lesions, and is therefore critical for the maintenance of genome stability. We show in this work that, following cellular stress, Rad5 is regulated by relocalization into two types of nuclear foci that coexist within the same cell, which we termed 'S' and 'I'. Rad5 S-foci form in response to genotoxic stress and are associated with Rad5's function in maintaining genome stability, whereas I-foci form in the presence of proteotoxic stress and are related to Rad5's own proteostasis. Rad5 accumulates into S-foci at DNA damage tolerance sites by liquid-liquid phase separation, while I-foci constitute sites of chaperone-mediated sequestration of Rad5 at the intranuclear quality control compartment (INQ). Relocalization of Rad5 into each type of foci involves different pathways and recruitment mechanisms, but in both cases is driven by the evolutionarily conserved E2 ubiquitin-conjugating enzyme Rad6. This coordinated differential relocalization of Rad5 interconnects DNA damage response and proteostasis networks, highlighting the importance of studying these homeostasis mechanisms in tandem. Spatial regulation of Rad5 under cellular stress conditions thus provides a useful biological model to study cellular homeostasis as a whole.


Assuntos
DNA Helicases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteostase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Methods Mol Biol ; 2750: 19-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108964

RESUMO

The CRISPR-Cas9 genome editing system is used to induce mutations in genes of interest resulting in the loss of functional protein. A transgenic zebrafish α1-antitrypsin deficiency (AATD) model displays an unusual phenotype, in that it lacks the hepatic accumulation of the misfolding Z α1-antitrypsin (ZAAT) evident in human and mouse models. Here we describe the application of the CRISPR-Cas9 system to generate mutant zebrafish with defects in key proteostasis networks likely to be involved in the hepatic processing of ZAAT in this model. We describe the targeting of the atf6a and man1b1 genes as examples.


Assuntos
Perciformes , Proteostase , Humanos , Animais , Camundongos , Proteostase/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Peixe-Zebra/genética , Animais Geneticamente Modificados
6.
Mol Cell ; 84(1): 80-93, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103561

RESUMO

Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.


Assuntos
Proteostase , Fatores de Transcrição , Proteostase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Chaperonas Moleculares/genética , Cromatina/genética , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo
7.
FEBS J ; 290(23): 5581-5604, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665644

RESUMO

Functional networks in cells are created by physical, genetic, and regulatory interactions. Mapping them and annotating their functions by available methods remains a challenge. We use affinity purification mass spectrometry (AP-MS) coupled with SLiMFinder to discern such a network involving 26S proteasome non-ATPase regulatory subunit 9 (PSMD9), a chaperone of proteasome assembly. Approximately 20% of proteins within the PSMD9 interactome carry a short linear motif (SLiM) of the type 'EXKK'. The binding of purified PSMD9 with the peptide sequence ERKK, proteins heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1; containing ERKK), and peroxiredoxin-6 (PRDX6; containing EAKK) provided proof of principle for this motif-driven network. The EXKK motif in the peptide primarily interacts with the coiled-coil N domain of PSMD9, a unique interaction not reported for any coiled-coil domain. PSMD9 knockout (KO) HEK293 cells experience endoplasmic reticulum (ER) stress and respond by increasing the unfolded protein response (UPR) and reducing the formation of aggresomes and lipid droplets. Trans-expression of PSMD9 in the KO cells rescues lipid droplet formation. Overexpression of PSMD9 in HEK293 cells results in reduced UPR, and increased lipid droplet and aggresome formation. The outcome argues for the prominent role of PSMD9 in maintaining proteostasis. Probable mechanisms involve the binding of PSMD9 to binding immunoglobulin protein (BIP/GRP78; containing EDKK), an endoplasmic reticulum chaperone and key regulator of the UPR, and fatty acid synthase (FASN; containing ELKK), involved in fatty acid synthesis/lipid biogenesis. We propose that PSMD9 acts as a buffer in the cellular milieu by moderating the UPR and enhancing aggresome formation to reduce stress-induced proteotoxicity. Akin to waves created in ponds that perpetuate to a distance, perturbing the levels of PSMD9 would cause ripples down the networks, affecting final reactions in the pathway, one of which is altered proteostasis.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteostase , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/genética , Células HEK293 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Proteínas de Transporte/genética , Peptídeos/genética
8.
PLoS One ; 18(9): e0291164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682893

RESUMO

Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.


Assuntos
Genômica , Proteostase , Proteostase/genética , Biologia Computacional , Endopeptidases , Peptídeo Hidrolases , Ferro , Trifosfato de Adenosina
9.
PLoS Genet ; 19(7): e1010344, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418499

RESUMO

The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insights into cellular responses to impaired plastid protein homeostasis.


Assuntos
Proteoma , Proteostase , Proteostase/genética , Proteoma/genética , Proteoma/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Transgenic Res ; 32(3): 209-221, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37133648

RESUMO

Maintenance of calcium homeostasis is important for proper endoplasmic reticulum (ER) function. When cellular stress conditions deplete the high concentration of calcium in the ER, ER-resident proteins are secreted into the extracellular space in a process called exodosis. Monitoring exodosis provides insight into changes in ER homeostasis and proteostasis resulting from cellular stress associated with ER calcium dysregulation. To monitor cell-type specific exodosis in the intact animal, we created a transgenic mouse line with a Gaussia luciferase (GLuc)-based, secreted ER calcium-modulated protein, SERCaMP, preceded by a LoxP-STOP-LoxP (LSL) sequence. The Cre-dependent LSL-SERCaMP mice were crossed with albumin (Alb)-Cre and dopamine transporter (DAT)-Cre mouse lines. GLuc-SERCaMP expression was characterized in mouse organs and extracellular fluids, and the secretion of GLuc-SERCaMP in response to cellular stress was monitored following pharmacological depletion of ER calcium. In LSL-SERCaMP × Alb-Cre mice, robust GLuc activity was observed only in the liver and blood, whereas in LSL-SERCaMP × DAT-Cre mice, GLuc activity was seen in midbrain dopaminergic neurons and tissue samples innervated by dopaminergic projections. After calcium depletion, we saw increased GLuc signal in the plasma and cerebrospinal fluid collected from the Alb-Cre and DAT-Cre crosses, respectively. This mouse model can be used to investigate the secretion of ER-resident proteins from specific cell and tissue types during disease pathogenesis and may aid in the identification of therapeutics and biomarkers of disease.


Assuntos
Cálcio , Proteostase , Camundongos , Animais , Proteostase/genética , Cálcio/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Retículo Endoplasmático/genética , Camundongos Transgênicos
11.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016577

RESUMO

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Proteômica , Proteostase/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
12.
Nat Commun ; 14(1): 2290, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085479

RESUMO

Tissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors. Mechanistically, we find that SYNCRIP loss results in a failure to maintain proteome homeostasis that is essential for HSC maintenance. SYNCRIP depletion results in increased protein synthesis, a dysregulated epichaperome, an accumulation of misfolded proteins and induces endoplasmic reticulum stress. Additionally, we find that SYNCRIP is required for translation of CDC42 RHO-GTPase, and loss of SYNCRIP results in defects in polarity, asymmetric segregation, and dilution of unfolded proteins. Forced expression of CDC42 recovers polarity and in vitro replating activities of HSCs. Taken together, we uncovered a post-transcriptional regulatory program that safeguards HSC self-renewal capacity and blood homeostasis.


Assuntos
Células-Tronco Hematopoéticas , Ribonucleoproteínas Nucleares Heterogêneas , Proteostase , Animais , Camundongos , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos Knockout , Proteostase/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Aging Cell ; 21(11): e13688, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36225129

RESUMO

Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Masculino , Humanos , Adolescente , Lamina Tipo A/genética , Senilidade Prematura/genética , Proteostase/genética , Mutação/genética
14.
J Biol Chem ; 298(10): 102489, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113581

RESUMO

The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.


Assuntos
Adenosina Trifosfatases , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Proteostase , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteostase/genética
15.
Life Sci ; 306: 120852, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917940

RESUMO

Cells are exposed to several environmental or chemical stressors that may cause DNA damage. DNA damage alters the normal functioning of the cell and contributes to several diseases, including cancer. Cells either induce DNA damage repair pathways or programmed cell death pathways to prevent disease formation depending on the severity of the stress and the damage caused. The DNA repair mechanisms are crucial to maintaining genome stability. During this adaptive response, the heat shock proteins (HSPs) are the key players. HSPs are overexpressed during genotoxic stress, but the role of different molecular players in the interaction between HSPs and DNA repair proteins is still poorly understood. As DNA damage promotes genomic instability and proteotoxic stress, modulating the protein quality control systems like the HSPs network could be a promising strategy for targeting disease pathologies associated with genomic instability, such as cancer. Hence, this review highlights the role of HSPs in DNA repair pathways. Further, the review also provides an outlook on the role of genomic instability and protein homeostasis in cancer, which is crucial to understanding the mechanisms behind its survival and developing novel targeted therapies.


Assuntos
Neoplasias , Proteostase , Dano ao DNA/genética , Reparo do DNA , Instabilidade Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteostase/genética
16.
PLoS Biol ; 20(7): e3001710, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862315

RESUMO

Gustatory Receptor 64 (Gr64) genes are a cluster of 6 neuronally expressed receptors involved in sweet taste sensation in Drosophila melanogaster. Gr64s modulate calcium signalling and excitatory responses to several different sugars. Here, we discover an unexpected nonneuronal function of Gr64 receptors and show that they promote proteostasis in epithelial cells affected by proteotoxic stress. Using heterozygous mutations in ribosome proteins (Rp), which have recently been shown to induce proteotoxic stress and protein aggregates in cells, we show that Rp/+ cells in Drosophila imaginal discs up-regulate expression of the entire Gr64 cluster and depend on these receptors for survival. We further show that loss of Gr64 in Rp/+ cells exacerbates stress pathway activation and proteotoxic stress by negatively affecting autophagy and proteasome function. This work identifies a noncanonical role in proteostasis maintenance for a family of gustatory receptors known for their function in neuronal sensation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Proteostase/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Paladar/fisiologia
17.
Essays Biochem ; 66(2): 147-154, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35678302

RESUMO

Proper regulation of protein homeostasis (proteostasis) is essential for all organisms to survive. A diverse range of post-translational modifications (PTMs) allow precise control of protein abundance, function and cellular localisation. In eukaryotic cells, ubiquitination is a widespread, essential PTM that regulates most, if not all cellular processes. Ubiquitin is added to target proteins via a well-defined enzymatic cascade involving a range of conjugating enzymes and ligases, while its removal is catalysed by a class of enzymes known as deubiquitinases (DUBs). Many human diseases have now been linked to DUB dysfunction, demonstrating the importance of these enzymes in maintaining cellular function. These findings have led to a recent explosion in studying the structure, molecular mechanisms and physiology of DUBs in mammalian systems. Plant DUBs have however remained relatively understudied, with many DUBs identified but their substrates, binding partners and the cellular pathways they regulate only now beginning to emerge. This review focuses on the most recent findings in plant DUB biology, particularly on newly identified DUB substrates and how these offer clues to the wide-ranging roles that DUBs play in the cell. Furthermore, the future outlook on how new technologies in mammalian systems can accelerate the plant DUB field forward is discussed.


Assuntos
Enzimas Desubiquitinantes , Proteínas de Plantas , Plantas , Proteostase , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteostase/genética , Proteostase/fisiologia , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia
18.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743185

RESUMO

Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.


Assuntos
Demência Frontotemporal , Músculo Estriado , Miosite de Corpos de Inclusão , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Proteostase/genética , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(20): e2121362119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549553

RESUMO

Photoinhibitory high light stress in Arabidopsis leads to increases in markers of protein degradation and transcriptional up-regulation of proteases and proteolytic machinery, but proteostasis is largely maintained. We find significant increases in the in vivo degradation rate for specific molecular chaperones, nitrate reductase, glyceraldehyde-3 phosphate dehydrogenase, and phosphoglycerate kinase and other plastid, mitochondrial, peroxisomal, and cytosolic enzymes involved in redox shuttles. Coupled analysis of protein degradation rates, mRNA levels, and protein abundance reveal that 57% of the nuclear-encoded enzymes with higher degradation rates also had high light­induced transcriptional responses to maintain proteostasis. In contrast, plastid-encoded proteins with enhanced degradation rates showed decreased transcript abundances and must maintain protein abundance by other processes. This analysis reveals a light-induced transcriptional program for nuclear-encoded genes, beyond the regulation of the photosystem II (PSII) D1 subunit and the function of PSII, to replace key protein degradation targets in plants and ensure proteostasis under high light stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteólise , Proteostase , Transcrição Gênica , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteólise/efeitos da radiação , Proteostase/genética , Proteostase/efeitos da radiação , Transcrição Gênica/efeitos da radiação
20.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35466366

RESUMO

Tripeptidyl peptidase II (TPPII or TPP2) degrades N-terminal tripeptides from proteins and peptides. Studies in both humans and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that although the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of the levels of the serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation in the amount of lysosomal contents as in well as TPPI (TPP1) and ß-galactosidase activities, suggesting that lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together, this study discloses a critical role of the serpinB2-TPPII signaling pathway in proteostasis during senescence. Since serpinB2 levels can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Aminopeptidases , Senescência Celular , Dipeptidil Peptidases e Tripeptidil Peptidases , Peptídeos e Proteínas de Sinalização Intracelular , Aminopeptidases/genética , Aminopeptidases/metabolismo , Senescência Celular/genética , Senescência Celular/fisiologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteostase/genética , Proteostase/fisiologia , Serina Endopeptidases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...